[FreeCoursesOnline.Me] Coursera - Bayesian Methods for Machine Learning
File Information:
- Magnet Link:Magnet Link
- File Size:2.26 GB
- Creat Time:2024-08-20
- Active Degree:19
- Last Active:2024-11-25
- File Tags:FreeCoursesOnline Me Coursera Bayesian Methods for Machine Learning
- Statement:This site does not provide download links, only text displays, and does not contain any infringement.
File List:
- 007.Latent Dirichlet Allocation/036. LDA M-step & prediction.mp4 95.71 MB
- 006.Variational inference/028. Mean field approximation.mp4 79.16 MB
- 007.Latent Dirichlet Allocation/034. LDA E-step, theta.mp4 77.38 MB
- 011.Gaussian Processes and Bayesian Optimization/062. Derivation of main formula.mp4 71.54 MB
- 006.Variational inference/029. Example Ising model.mp4 69.87 MB
- 004.Expectation Maximization algorithm/017. E-step details.mp4 67.83 MB
- 004.Expectation Maximization algorithm/020. Example EM for discrete mixture, M-step.mp4 67.04 MB
- 005.Applications and examples/022. General EM for GMM.mp4 64.03 MB
- 008.MCMC/041. Gibbs sampling.mp4 62.88 MB
- 001.Introduction to Bayesian methods/004. Example thief & alarm.mp4 61.28 MB
- 007.Latent Dirichlet Allocation/035. LDA E-step, z.mp4 60.65 MB
- 004.Expectation Maximization algorithm/019. Example EM for discrete mixture, E-step.mp4 57.73 MB
- 001.Introduction to Bayesian methods/005. Linear regression.mp4 51.27 MB
- 009.Variational autoencoders/052. Scaling variational EM.mp4 48.93 MB
- 008.MCMC/040. Markov Chains.mp4 48.19 MB
- 008.MCMC/039. Sampling from 1-d distributions.mp4 48.18 MB
- 008.MCMC/047. MCMC for LDA.mp4 47.80 MB
- 008.MCMC/038. Monte Carlo estimation.mp4 45.57 MB
- 008.MCMC/044. Metropolis-Hastings choosing the critic.mp4 43.02 MB
- 005.Applications and examples/025. Probabilistic PCA.mp4 39.91 MB
- 011.Gaussian Processes and Bayesian Optimization/063. Nuances of GP.mp4 37.69 MB
- 003.Latent Variable Models/010. Latent Variable Models.mp4 37.67 MB
- 008.MCMC/045. Example of Metropolis-Hastings.mp4 37.49 MB
- 010.Variational Dropout/057. Dropout as Bayesian procedure.mp4 35.87 MB
- 008.MCMC/048. Bayesian Neural Networks.mp4 34.85 MB
- 009.Variational autoencoders/050. Modeling a distribution of images.mp4 33.02 MB
- 004.Expectation Maximization algorithm/016. Expectation-Maximization algorithm.mp4 32.73 MB
- 003.Latent Variable Models/013. Training GMM.mp4 32.37 MB
- 003.Latent Variable Models/014. Example of GMM training.mp4 32.03 MB
- 011.Gaussian Processes and Bayesian Optimization/064. Bayesian optimization.mp4 31.98 MB
- 005.Applications and examples/024. K-means, M-step.mp4 31.69 MB
- 010.Variational Dropout/056. Learning with priors.mp4 31.11 MB
- 008.MCMC/043. Metropolis-Hastings.mp4 30.62 MB
- 010.Variational Dropout/058. Sparse variational dropout.mp4 30.33 MB
- 003.Latent Variable Models/012. Gaussian Mixture Model.mp4 29.86 MB
- 005.Applications and examples/023. K-means from probabilistic perspective.mp4 29.14 MB
- 004.Expectation Maximization algorithm/015. Jensen's inequality & Kullback Leibler divergence.mp4 29.04 MB
- 008.MCMC/042. Example of Gibbs sampling.mp4 28.25 MB
- 008.MCMC/046. Markov Chain Monte Carlo summary.mp4 27.47 MB
- 009.Variational autoencoders/055. Reparameterization trick.mp4 25.79 MB
- 009.Variational autoencoders/051. Using CNNs with a mixture of Gaussians.mp4 25.45 MB
- 011.Gaussian Processes and Bayesian Optimization/060. Gaussian processes.mp4 24.76 MB
- 001.Introduction to Bayesian methods/001. Think bayesian & Statistics review.mp4 24.26 MB
- 005.Applications and examples/026. EM for Probabilistic PCA.mp4 22.32 MB
- 003.Latent Variable Models/011. Probabilistic clustering.mp4 22.22 MB
- 009.Variational autoencoders/054. Log derivative trick.mp4 21.29 MB
- 007.Latent Dirichlet Allocation/032. Dirichlet distribution.mp4 20.98 MB
- 004.Expectation Maximization algorithm/021. Summary of Expectation Maximization.mp4 20.77 MB
- 009.Variational autoencoders/049. Scaling Variational Inference & Unbiased estimates.mp4 19.96 MB
- 009.Variational autoencoders/053. Gradient of decoder.mp4 19.77 MB
[FreeCoursesOnline.Me] Coursera - Bayesian Methods for Machine Learning
Hot Tags: