Lynda - DevOps for Data Scientists
File Information:
- Magnet Link:Magnet Link
- File Size:54.74 MB
- Creat Time:2024-05-19
- Active Degree:110
- Last Active:2024-11-07
- File Tags:Lynda DevOps for Data Scientists
- Statement:This site does not provide download links, only text displays, and does not contain any infringement.
File List:
- 4.3. Deployment Practices/12.Securing the data science models in production.mp4 6.02 MB
- 2.1. Data Science Development Practices/05.Experimenting with data, features, and algorithms.mp4 4.43 MB
- 4.3. Deployment Practices/13.Monitoring models in production.mp4 4.37 MB
- 3.2. Data Science Models to Production/07.Version control for data science models.mp4 4.18 MB
- 1.Introduction/01.Welcome.mp4 4.08 MB
- 2.1. Data Science Development Practices/04.Collecting and munging data.mp4 4.02 MB
- 3.2. Data Science Models to Production/08.Predictive Model Markup Language.mp4 3.91 MB
- 5.4. Data Science Models in Containers/15.Creating a Dockerfile for data science models.mp4 3.51 MB
- 5.4. Data Science Models in Containers/16.Data science Docker image repository.mp4 3.38 MB
- 2.1. Data Science Development Practices/03.Data science and software engineering.mp4 2.77 MB
- 2.1. Data Science Development Practices/06.Testing and validating models.mp4 2.52 MB
- 6.Conclusion/17.Overview of DevOps best practices for data science.mp4 2.50 MB
- 5.4. Data Science Models in Containers/14.Introduction to Docker.mp4 2.43 MB
- 3.2. Data Science Models to Production/09.Deploying models with automation tools.mp4 2.17 MB
- 4.3. Deployment Practices/11.Canary deployments.mp4 1.80 MB
- 4.3. Deployment Practices/10.Deploying to staging environment.mp4 1.77 MB
- 1.Introduction/02.Target audience.mp4 831 KB
- 4.3. Deployment Practices/12.Securing the data science models in production.en.srt 7 KB
- 3.2. Data Science Models to Production/07.Version control for data science models.en.srt 4 KB
- 2.1. Data Science Development Practices/04.Collecting and munging data.en.srt 4 KB
- 4.3. Deployment Practices/13.Monitoring models in production.en.srt 4 KB
- 5.4. Data Science Models in Containers/15.Creating a Dockerfile for data science models.en.srt 4 KB
- 3.2. Data Science Models to Production/08.Predictive Model Markup Language.en.srt 3 KB
- 6.Conclusion/17.Overview of DevOps best practices for data science.en.srt 2 KB
- 2.1. Data Science Development Practices/06.Testing and validating models.en.srt 2 KB
- 5.4. Data Science Models in Containers/14.Introduction to Docker.en.srt 2 KB
- 2.1. Data Science Development Practices/05.Experimenting with data, features, and algorithms.en.srt 2 KB
- 5.4. Data Science Models in Containers/16.Data science Docker image repository.en.srt 2 KB
- 3.2. Data Science Models to Production/09.Deploying models with automation tools.en.srt 2 KB
- 2.1. Data Science Development Practices/03.Data science and software engineering.en.srt 2 KB
- 4.3. Deployment Practices/11.Canary deployments.en.srt 2 KB
- 1.Introduction/01.Welcome.en.srt 2 KB
- 4.3. Deployment Practices/10.Deploying to staging environment.en.srt 2 KB
- 1.Introduction/02.Target audience.en.srt 1 KB
Lynda - DevOps for Data Scientists
Hot Tags: