Mastering Machine Learning Algorithms using Python

File Information:
  1. Magnet Link:Magnet LinkMagnet Link
  2. File Size:7.37 GB
  3. Creat Time:2024-08-25
  4. Active Degree:112
  5. Last Active:2024-11-26
  6. File Tags:Mastering  Machine  Learning  Algorithms  using  Python  
  7. Statement:This site does not provide download links, only text displays, and does not contain any infringement.
File List:

    Mastering Machine Learning Algorithms using Python

  1. Chapter 13 Introduction to Deep Learning/001. Introduction to Deep Learning.mp4 256.68 MB
  2. Chapter 04 Exploratory Data Analysis/009. EDA Project 7.mp4 135.04 MB
  3. Chapter 03 Learning Python/010. Python Sets 1.mp4 133.48 MB
  4. Chapter 06 Logistic Regression/006. Model Evaluation - AUC-ROC.mp4 124.28 MB
  5. Chapter 03 Learning Python/023. Pandas DataFrame 5.mp4 123.15 MB
  6. Chapter 12 Unsupervised Learning using K-Means Clustering/002. K-Means Clustering Computation.mp4 117.62 MB
  7. Chapter 01 Introduction to Machine Learning/004. History of Machine Learning.mp4 112.86 MB
  8. Chapter 06 Logistic Regression/004. Data Analysis and Feature Engineering.mp4 105.76 MB
  9. Chapter 05 Linear Regression/010. Data Preparation and Analysis 3.mp4 102.10 MB
  10. Chapter 02 Statistical Techniques/008. Hypothesis Testing.mp4 98.05 MB
  11. Chapter 03 Learning Python/016. Pandas Series 2.mp4 95.95 MB
  12. Chapter 06 Logistic Regression/002. Logit Model.mp4 94.40 MB
  13. Chapter 01 Introduction to Machine Learning/007. Challenges in Machine Learning.mp4 92.81 MB
  14. Chapter 02 Statistical Techniques/004. Histograms and Normal Approximation.mp4 91.22 MB
  15. Chapter 09 Random Forest Ensemble/003. Model Building and Hyperparameter Tuning using Grid Search CV.mp4 90.02 MB
  16. Chapter 05 Linear Regression/006. OLS Assumptions and Testing.mp4 89.28 MB
  17. Chapter 03 Learning Python/007. Python Tuples.mp4 88.17 MB
  18. Chapter 11 Dimensionality Reduction - Principal Component Analysis (PCA)/001. Principal Component Analysis - Concepts.mp4 87.89 MB
  19. Chapter 08 Decision Tree Classifier/006. Model Optimization using Grid Search Cross Validation.mp4 87.56 MB
  20. Chapter 03 Learning Python/003. Python Variables and Conditions.mp4 86.50 MB
  21. Chapter 05 Linear Regression/011. Model Building.mp4 84.61 MB
  22. Chapter 03 Learning Python/008. Python Dictionaries 1.mp4 84.28 MB
  23. Chapter 08 Decision Tree Classifier/002. Decision Tree - Learning Steps.mp4 83.94 MB
  24. Chapter 06 Logistic Regression/005. Build the Logistic Model.mp4 83.20 MB
  25. Chapter 02 Statistical Techniques/007. Binomial Theory - Expected Value and Standard Error.mp4 82.58 MB
  26. Chapter 05 Linear Regression/002. Training and Cost Function.mp4 82.42 MB
  27. Chapter 04 Exploratory Data Analysis/003. EDA Project 1.mp4 81.59 MB
  28. Chapter 03 Learning Python/017. Pandas Series 3.mp4 81.51 MB
  29. Chapter 06 Logistic Regression/003. Telecom Churn Case Study.mp4 80.29 MB
  30. Chapter 03 Learning Python/026. Python Lambda Functions.mp4 80.28 MB
  31. Chapter 04 Exploratory Data Analysis/008. EDA Project 6.mp4 79.73 MB
  32. Chapter 09 Random Forest Ensemble/002. Random Forest Steps Pruning and Optimization.mp4 79.36 MB
  33. Chapter 06 Logistic Regression/001. Logistic Regression Introduction.mp4 79.05 MB
  34. Chapter 01 Introduction to Machine Learning/008. Machine Learning Life Cycle and Pipelines.mp4 78.68 MB
  35. Chapter 03 Learning Python/006. Python Lists.mp4 78.13 MB
  36. Chapter 02 Statistical Techniques/005. Central Limit Theorem.mp4 77.55 MB
  37. Chapter 05 Linear Regression/012. Model Evaluation and Optimization.mp4 77.31 MB
  38. Chapter 01 Introduction to Machine Learning/012. Optimizing Classification Metrics.mp4 75.36 MB
  39. Chapter 03 Learning Python/018. Pandas Series 4.mp4 75.10 MB
  40. Chapter 04 Exploratory Data Analysis/007. EDA Project 5.mp4 73.77 MB
  41. Chapter 05 Linear Regression/007. Car Price Prediction.mp4 73.58 MB
  42. Chapter 07 Naive Bayes Classification Algorithm/003. Employee Attrition Case Study.mp4 73.31 MB
  43. Chapter 01 Introduction to Machine Learning/005. Machine Learning Use Cases and Types.mp4 72.83 MB
  44. Chapter 10 Support Vector Machine/001. Support Vector Machine Concepts.mp4 72.24 MB
  45. Chapter 08 Decision Tree Classifier/005. Iris Dataset Case Study.mp4 71.95 MB
  46. Chapter 03 Learning Python/015. Pandas Series 1.mp4 71.62 MB
  47. Chapter 03 Learning Python/021. Pandas DataFrame 3.mp4 70.94 MB
  48. Chapter 07 Naive Bayes Classification Algorithm/002. Naive Bayes Probability Computation.mp4 69.94 MB
  49. Chapter 05 Linear Regression/003. Cost Functions and Gradient Descent.mp4 69.82 MB
  50. Chapter 06 Logistic Regression/007. Model Optimization 1.mp4 69.04 MB