[CourseClub.NET] Coursera - Applied Machine Learning in Python
File Information:
- Magnet Link:Magnet Link
- File Size:902.21 MB
- Creat Time:2024-07-02
- Active Degree:23
- Last Active:2024-11-23
- File Tags:CourseClub NET Coursera Applied Machine Learning in Python
- Statement:This site does not provide download links, only text displays, and does not contain any infringement.
File List:
- 003.Module 3 Evaluation/019. Model Evaluation & Selection.mp4 47.20 MB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.mp4 45.62 MB
- 004.Module 4 Supervised Machine Learning - Part 2/029. Neural Networks.mp4 42.51 MB
- 002.Module 2 Supervised Machine Learning/012. Linear Regression Ridge, Lasso, and Polynomial Regression.mp4 40.89 MB
- 002.Module 2 Supervised Machine Learning/016. Kernelized Support Vector Machines.mp4 40.08 MB
- 002.Module 2 Supervised Machine Learning/007. Introduction to Supervised Machine Learning.mp4 38.79 MB
- 002.Module 2 Supervised Machine Learning/018. Decision Trees.mp4 38.74 MB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.mp4 37.12 MB
- 003.Module 3 Evaluation/025. Model Selection Optimizing Classifiers for Different Evaluation Metrics.mp4 35.33 MB
- 004.Module 4 Supervised Machine Learning - Part 2/031. Data Leakage.mp4 33.68 MB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/005. Examining the Data.mp4 33.01 MB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/004. An Example Machine Learning Problem.mp4 32.49 MB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/001. Introduction.mp4 31.79 MB
- 002.Module 2 Supervised Machine Learning/011. Linear Regression Least-Squares.mp4 30.80 MB
- 005.Optional Unsupervised Machine Learning/034. Clustering.mp4 27.83 MB
- 004.Module 4 Supervised Machine Learning - Part 2/027. Random Forests.mp4 27.08 MB
- 002.Module 2 Supervised Machine Learning/014. Linear Classifiers Support Vector Machines.mp4 23.23 MB
- 002.Module 2 Supervised Machine Learning/010. K-Nearest Neighbors Classification and Regression.mp4 23.07 MB
- 004.Module 4 Supervised Machine Learning - Part 2/026. Naive Bayes Classifiers.mp4 21.89 MB
- 003.Module 3 Evaluation/020. Confusion Matrices & Basic Evaluation Metrics.mp4 21.25 MB
- 002.Module 2 Supervised Machine Learning/013. Logistic Regression.mp4 20.78 MB
- 002.Module 2 Supervised Machine Learning/017. Cross-Validation.mp4 20.47 MB
- 003.Module 3 Evaluation/023. Multi-Class Evaluation.mp4 20.24 MB
- 002.Module 2 Supervised Machine Learning/008. Overfitting and Underfitting.mp4 19.97 MB
- 004.Module 4 Supervised Machine Learning - Part 2/030. Deep Learning (Optional).mp4 17.88 MB
- 003.Module 3 Evaluation/024. Regression Evaluation.mp4 17.42 MB
- 005.Optional Unsupervised Machine Learning/033. Dimensionality Reduction and Manifold Learning.mp4 16.47 MB
- 002.Module 2 Supervised Machine Learning/015. Multi-Class Classification.mp4 15.78 MB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/003. Python Tools for Machine Learning.mp4 13.17 MB
- 003.Module 3 Evaluation/021. Classifier Decision Functions.mp4 12.96 MB
- 004.Module 4 Supervised Machine Learning - Part 2/028. Gradient Boosted Decision Trees.mp4 12.09 MB
- 002.Module 2 Supervised Machine Learning/009. Supervised Learning Datasets.mp4 11.49 MB
- 005.Optional Unsupervised Machine Learning/032. Introduction.mp4 10.92 MB
- 006.Conclusion/035. Conclusion.mp4 10.13 MB
- 003.Module 3 Evaluation/022. Precision-recall and ROC curves.mp4 9.45 MB
- 003.Module 3 Evaluation/019. Model Evaluation & Selection.srt 30 KB
- 002.Module 2 Supervised Machine Learning/018. Decision Trees.srt 29 KB
- 004.Module 4 Supervised Machine Learning - Part 2/029. Neural Networks.srt 28 KB
- 002.Module 2 Supervised Machine Learning/012. Linear Regression Ridge, Lasso, and Polynomial Regression.srt 27 KB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.srt 26 KB
- 002.Module 2 Supervised Machine Learning/016. Kernelized Support Vector Machines.srt 26 KB
- 002.Module 2 Supervised Machine Learning/007. Introduction to Supervised Machine Learning.srt 22 KB
- 002.Module 2 Supervised Machine Learning/011. Linear Regression Least-Squares.srt 21 KB
- 005.Optional Unsupervised Machine Learning/034. Clustering.srt 20 KB
- 001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.srt 19 KB
- 003.Module 3 Evaluation/025. Model Selection Optimizing Classifiers for Different Evaluation Metrics.srt 18 KB
- 002.Module 2 Supervised Machine Learning/013. Logistic Regression.srt 17 KB
- 002.Module 2 Supervised Machine Learning/010. K-Nearest Neighbors Classification and Regression.srt 17 KB
- 004.Module 4 Supervised Machine Learning - Part 2/027. Random Forests.srt 17 KB
- 004.Module 4 Supervised Machine Learning - Part 2/031. Data Leakage.srt 17 KB
[CourseClub.NET] Coursera - Applied Machine Learning in Python
Hot Tags: