[FreeCourseSite.com] Udemy - Applied Deep Learning Build a Chatbot - Theory, Application

File Information:
  1. Magnet Link:Magnet LinkMagnet Link
  2. File Size:3.18 GB
  3. Creat Time:2024-07-04
  4. Active Degree:5
  5. Last Active:2024-09-10
  6. File Tags:FreeCourseSite  com  Udemy  Applied  Deep  Learning  Build  a  Chatbot  Theory  Application  
  7. Statement:This site does not provide download links, only text displays, and does not contain any infringement.
File List:

    [FreeCourseSite.com] Udemy - Applied Deep Learning Build a Chatbot - Theory, Application

  1. 6. Practical Part 4 - Building the Model/2. Defining the Encoder.mp4 248.04 MB
  2. 6. Practical Part 4 - Building the Model/6. Designing the Decoder Part 2.mp4 164.00 MB
  3. 6. Practical Part 4 - Building the Model/4. Designing the Attention Model.mp4 155.12 MB
  4. 7. Practical Part 5 - Training the Model/3. Visualize Training Part 1.mp4 135.04 MB
  5. 6. Practical Part 4 - Building the Model/5. Designing the Decoder Part 1.mp4 130.33 MB
  6. 7. Practical Part 5 - Training the Model/5. Training.mp4 125.80 MB
  7. 7. Practical Part 5 - Training the Model/4. Visualize Training Part 2.mp4 115.84 MB
  8. 5. Practical Part 3 - Data Preperation/5. Preparing the Data for Model Part 4.mp4 106.80 MB
  9. 4. Practical Part 2 - Processing the Dataset/8. Processing the Text Part 2.mp4 97.93 MB
  10. 4. Practical Part 2 - Processing the Dataset/7. Processing the Text.mp4 97.92 MB
  11. 4. Practical Part 2 - Processing the Dataset/6. Processing the Words.mp4 91.35 MB
  12. 5. Practical Part 3 - Data Preperation/4. Preparing the Data for Model Part 3.mp4 90.69 MB
  13. 5. Practical Part 3 - Data Preperation/1. Preparing the Data for Model Part 1.mp4 89.19 MB
  14. 4. Practical Part 2 - Processing the Dataset/10. Getting Rid of Rare Words.mp4 84.52 MB
  15. 4. Practical Part 2 - Processing the Dataset/1. The Dataset.mp4 83.81 MB
  16. 1. Theory Part 1 - RNNs and LSTMs/2. Introduction to RNNs Part 1.mp4 81.31 MB
  17. 3. Practical Part 1 - Introduction to PyTorch/2. Torch Tensors Part 1.mp4 79.57 MB
  18. 4. Practical Part 2 - Processing the Dataset/4. Processing the Dataset Part 3.mp4 77.51 MB
  19. 4. Practical Part 2 - Processing the Dataset/3. Processing the Data Part 2.mp4 75.61 MB
  20. 3. Practical Part 1 - Introduction to PyTorch/1. Installing PyTorch and an Introduction.mp4 74.68 MB
  21. 1. Theory Part 1 - RNNs and LSTMs/5. Playing with the Activations.mp4 73.30 MB
  22. 4. Practical Part 2 - Processing the Dataset/2. Processing the Dataset Part 1.mp4 69.70 MB
  23. 3. Practical Part 1 - Introduction to PyTorch/3. Torch Tensors Part 2.vtt 69.59 MB
  24. 3. Practical Part 1 - Introduction to PyTorch/3. Torch Tensors Part 2.mp4 69.58 MB
  25. 1. Theory Part 1 - RNNs and LSTMs/3. Introduction to RNNs Part 2.mp4 69.46 MB
  26. 7. Practical Part 5 - Training the Model/1. Creating the Loss Function.mp4 69.09 MB
  27. 1. Theory Part 1 - RNNs and LSTMs/6. LSTMs.mp4 68.29 MB
  28. 4. Practical Part 2 - Processing the Dataset/9. Filtering the Text.mp4 64.75 MB
  29. 6. Practical Part 4 - Building the Model/3. Understanding Pack Padded Sequence.mp4 60.55 MB
  30. 4. Practical Part 2 - Processing the Dataset/5. Processing the Dataset Part 4.mp4 57.52 MB
  31. 5. Practical Part 3 - Data Preperation/3. Preparing the Data for Model Part 2.mp4 56.28 MB
  32. 6. Practical Part 4 - Building the Model/1. Understanding the Encoder.mp4 54.51 MB
  33. 7. Practical Part 5 - Training the Model/2. Teacher Forcing.mp4 50.07 MB
  34. 5. Practical Part 3 - Data Preperation/2. Understanding the zip function.mp4 46.46 MB
  35. 2. Theory Part 2 - Sequence Modeling/1. Sequence-to-Sequence Models.mp4 44.62 MB
  36. 2. Theory Part 2 - Sequence Modeling/2. Attention Mechanisms.mp4 41.09 MB
  37. 2. Theory Part 2 - Sequence Modeling/3. How Attention Mechanisms Work.mp4 37.66 MB
  38. 1. Theory Part 1 - RNNs and LSTMs/7. LSTM Variants.mp4 24.06 MB
  39. 1. Theory Part 1 - RNNs and LSTMs/8. LSTM Step-by-Step Example Walktrough.mp4 23.31 MB
  40. 6. Practical Part 4 - Building the Model/2. Defining the Encoder.vtt 28 KB
  41. 6. Practical Part 4 - Building the Model/6. Designing the Decoder Part 2.vtt 20 KB
  42. 6. Practical Part 4 - Building the Model/4. Designing the Attention Model.vtt 18 KB
  43. 6. Practical Part 4 - Building the Model/5. Designing the Decoder Part 1.vtt 17 KB
  44. 7. Practical Part 5 - Training the Model/3. Visualize Training Part 1.vtt 16 KB
  45. 5. Practical Part 3 - Data Preperation/5. Preparing the Data for Model Part 4.vtt 15 KB
  46. 7. Practical Part 5 - Training the Model/5. Training.vtt 14 KB
  47. 5. Practical Part 3 - Data Preperation/1. Preparing the Data for Model Part 1.vtt 14 KB
  48. 4. Practical Part 2 - Processing the Dataset/6. Processing the Words.vtt 13 KB
  49. 3. Practical Part 1 - Introduction to PyTorch/2. Torch Tensors Part 1.vtt 13 KB
  50. 7. Practical Part 5 - Training the Model/4. Visualize Training Part 2.vtt 12 KB